

Year 12 2018
Mathematics
HSC Course
Trial HSC

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A reference sheet is provided.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial or incomplete answers

Total marks - 100

I	Section	ī	10	mark
ı	Decizor		~~	

Attempt Questions 1-10 Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

Section	II	90 m	arks

Attempt Questions 11-16
Write your answers in the answer booklets
provided. Ensure your name or student
number is clearly visible.

Name:	Class:	

Section I		Total						
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
/10	/15	/15	/15	/15	/15	/15	/100	

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

1. The graph below shows the function:

- (A) $y = 3\sin 2x$
- (B) $y = 2\sin 3x$
- (C) $y = 3\sin\left(\frac{x}{2}\right)$
- (D) $y = 2\sin\left(\frac{x}{3}\right)$

$$2. \qquad \int \frac{dx}{3x+1} =$$

- (A) $\frac{1}{3}\log_e(3x+1)+c$
- (B) $\log_e\left(\frac{3x+1}{3}\right)+c$
- (C) $3\log_e(3x+1)+c$
- (D) $\log_e(3x+1)+c$

3. The diagram below shows the graph of y = f'(x).

Which letter indicates the position of the x-value of the maximum turning point of the function y = f(x)?

- (A) P
- (B) R
- (C) S
- (D) *T*
- 4. A parabola has the equation $x^2 + 2x + 25 = 8y$. The focus of the parabola is:
 - $(A) \qquad \left(-1,1\right)$
 - (B) (-1,5)
 - $(C) \qquad (1,1)$
 - (D) (-1,3)

- 5. The fourth term of a geometric series is 192 and the seventh term is -24. What is the infinite sum of the series?
 - (A) 1024
 - (B) -128
 - (C) 128
 - (D) -1024
- 6. If $\int_{2}^{5} f(x) dx = 7$, what is the value of $\int_{2}^{5} 1 f(x) dx$?
 - (A) -6
 - (B) -4
 - (C) 8
 - (D) 10
- 7. The domain of the function $y = \log_e(2x-1)$ is:
 - (A) All real $x, x \neq \frac{1}{2}$
 - (B) $x \ge \frac{1}{2}$
 - (C) $x > \frac{1}{2}$
 - (D) $x \le \frac{1}{2}$

8. A circular metal plate of area $A \, \text{cm}^2$ is beining heated. It is given that

$$\frac{dA}{dt} = \frac{\pi t}{32} \text{ cm}^2/\text{h}$$

What is the exact area of the plate after 8 hours, if initially the plate had a radius of 6 cm?

- (A) $\pi \text{ cm}^2$
- (B) $0.25\pi \,\mathrm{cm}^2$
- (C) $36\pi \,\mathrm{cm}^2$
- (D) $37\pi \, \text{cm}^2$
- 9. The series 1+2+4+5+7+8+....+199+200 is obtained by omitting from the first 200 positive integers all the multiples of 3. The sum of this series is:
 - (A) 20100
 - (B) 10050
 - (C) 17688
 - (D) 13467
- 10. It is assumed that the number N(t) of ants in a certain nest at time $t \ge 0$ is given by

 $N(t) = \frac{A}{1 + e^{-t}}$ where A is a constant and t is measured in months.

At time t = 0, N(t) is estimated at 2×10^5 ants. What is the value of A?

- (A) 2×10^5
- (B) 2×10^{-5}
- (C) 4×10^5
- (D) 4×10^{-5}

End of Section I

Section II 60 marks

Attempt Questions 11–16

Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Express
$$\frac{2}{\sqrt{7}-1}$$
 with a rational denominator in its simplest form.

(b) Express
$$\log_3 9 + \log_3 27$$
 as an integer.

(c) Evaluate
$$\int_{0}^{3} e^{2x+3} dx$$
, expressing your answer as an exact value.

(d) Differentiate the following with respect to x:

(i)
$$\tan(x^2)$$

(ii) $x^2 e^x$

2

(iii) $\frac{1}{3x^6}$

(e) Show that $\sqrt{2} + \sqrt{8} + \sqrt{18} + \dots$ is an arithmetic series and hence find the exact value of the sum of the first 50 terms in simplest form.

(f) Prove that
$$\frac{\sin^3 \theta}{\cos \theta} + \sin \theta \cos \theta = \tan \theta$$

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram below shows a paddock with one side bounded by a river.

Use Simpson's Rule with the 5 function values shown on the diagram to find the approximate area of the paddock.

1

2

4

- (b) A person walks 21 km due east from A. Another person walks 12 km from A on a bearing of 322°29′. How far apart are they, correct to the nearest km?
- (c) Consider the curve $y = x^3 6x^2 9x + 4$
 - (i) Find the stationary points and determine their nature.
 - (ii) Find the coordinates of any points of inflexion.
 - (iii) Find the values of x for which the curve is increasing and concave up. 1
 - (iv) Hence draw a half page sketch of the curve $y = x^3 6x^2 9x + 4$
- (d) Given that a parabola has its focus at (2,1) and vertex at (3,1) find:
 - (i) the focal length 1
 - (ii) the equation of the directrix 1
 - (iii) the equation of the parabola 1

(a) The shaded region that lies between the x-axis and the line y = 10 - 3x from x = 0 to x = 3 is rotated about the x-axis to form a solid of revolution. Find the exact volume of this solid.

(b) The graph of a function has the following properties:

2

- It is continuous
- Passes through the origin and has a minimum turning point at (4,0).
- Concave up for x > 3 and x < 0.
- Increasing for -2 < x < 2 and x > 4.

Sketch a possible graph of the function.

(c) Find:

(i)
$$\int \frac{dx}{\sqrt{x+6}}$$

- (ii) $\int_{0}^{2} \frac{x}{x^2 + 4} dx$ leaving your answer as an exact value in simplest form. 2
- (d) (i) Sketch the graph of $y = 1 + 2 \sin x$ for $0 \le x \le 2\pi$
 - (ii) Find the exact value of the coordinates of the points where the graph of $y = 1 + 2 \sin x$ crosses the x-axis in the domain $0 \le x \le 2\pi$
- (e) Factorise fully $16x^2 16a^2 + 24a 9$

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a)

In the diagram above A and B are points on the x and y axes respectively. The line AB has equation $\sqrt{3}x - y + \sqrt{3} = 0$. The point C lies on AB such that the area of $\triangle AOC$ is $3\sqrt{3}$ square units.

(i) Show that the coordinates of A and B are
$$(-1,0)$$
 and $(0,\sqrt{3})$.

(ii) Find the gradient of
$$AB$$
.

(iii) Find the size of
$$\angle BAO$$
.

(b) Find the exact value of
$$\tan \frac{\pi}{3} + \csc \frac{\pi}{4}$$

(c) Find the values for x so that
$$\log_e x = 2\log_e 2x$$

(d) Consider the quadratic function
$$x^2 - (k+2)x + 4 = 0$$
 2
For what values of k does the quadratic function have real roots?

Question 14 continues on page 10

Find the value of x.

(f) Find $\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$

2

(a) A cylindrical block of height h cm base radius r cm is cut from a solid sphere of radius 15 cm. O is the centre of the sphere.

- (i) Show that the volume of the cylinder is given by $v = 225\pi h \frac{\pi}{4}h^3$
- (ii) Find the height of the cylinder of maximum volume which can be cut from the sphere.
- **(b)** If α and β are the two roots of $2x^2 + 3x 4 = 0$, find the value of:

(i)
$$\alpha + \beta$$

(ii)
$$\alpha^3 + \beta^3$$

- (c) A family borrows \$120 000 to extend their house. The bank loans them the money for 10 years at an interest rate of 6% p.a. on the balance owing at the end of each month. The loan is to be repaid in equal monthly instalments of \$M\$.

 Let A_n be the amount owing after n months.
 - (i) How much do they owe at the end of the first month *before* the first payment is made?

1

- (ii) Show that at the end of the second month immediately *after* the second payment has been made the amount owing is given by $A_2 = (121203 2.005M)$
- (iii) Show that at the end of n months after n repayments have been made the amount owing will be given by

$$A_n = 120\,000 \times 1.005^n - 200M(1.005^n - 1)$$

(iv) Hence find the value of each monthly instalment \$M.

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) Water is draining from a storage tank at a rate that is proportional to the volume of water that is left contained in the tank. Let V be the amount of water in the tank.
 - (i) Show that $V = V_0 e^{-kt}$ is a solution to the differential equation $\frac{dV}{dt} = -kV$.
 - (ii) When full, the water tank holds 1000 L of water. After 40 minutes, the tank has 800 L of water. How much water will be left in the tank after 1 hour to the nearest litre?
 - (iii) How long in hours and minutes will it take for there to be 10 L of water left in the tank?
- (b) A right-angled triangle ACB is placed in a sector of a circle with radius 8 cm. AB = 4 cm and $\angle BAC = \frac{\pi}{3}$ radians.

Calculate the exact area of the shaded region BCD.

(c) ABCD is a rhombus. The angles involving α and θ are marked on the diagram.

3

Determine the size of α and θ giving clearly worded reasons. (Diagram is not drawn to scale.)

Question 16 continues on page 13

- (d) (i) Show that $\frac{d}{dx}(x\log_e x x) = \log_e x$
 - (ii) Hence, or otherwise, find $\int \log_e(x^2) dx$

1

1

(iii) The graph shows the curve $y = \log_e(x^2)$ which meets the line x = 5 at Q.

Using your answers from (i) and (ii), or otherwise, find the exact area of the shaded section.

End of Paper

_								
Ī		<u> </u>					·	
L	 	<u> </u>						
			Stude	ent No	ımbe	27		

Examination:....

2018 Zunit Trial CHS

1. a= 2 T= 21 so n=3 y=20m31 B

2. $\int \frac{dn}{3n+1} = \frac{1}{2} \ln(3n+1) + C$ [A]

3. + 10 - max P = A

4. (x+1) = 8(y-3) verten (-1,3) a=2 focus: (-1,5) [B]

5 $T_{4}=ar^{3}=192$ $r^{3}=\frac{-24}{192}=\frac{1}{8}$ so $r=\frac{1}{2}$

 $T_7 = ar^6 = -24$ $S = \frac{a}{1-r}$ $ax^{-1} = 192$ $s_0 = -1536$

 $S_{\tau} = \frac{-1536}{1+3} = \frac{-3072}{3} = -1024 \cdot \boxed{D}$ 6. $\int [-4] da^{2} = 2 \int_{2}^{2} -7 = 3-7 = -4 \int_{2}^{2}$

7. y= loge (201-\$) D: 2n-170 n> \(\bar{\x} \). [6]

8. dh = 176 : A= 17x + C += 0 A= 3611 [D]

9. 100x 201 = 33x 201 = 67x201 = 13467 D

10. N(0) = A = 2×10⁵
A= 4×10⁵

11std

G/19) 5-1 X 541 = 2542 = 17-11 b) log39+log327=2log37+3log3 i) $\frac{d + an(n)}{dn} = 20e \sec^2(9e^n)$ $\frac{d \operatorname{si}^2 e^{\operatorname{si}}}{d \operatorname{si}}$ 45712 V=671 = 112 e 2 + 201ex = 260 (2(+2) 52+58+ J8= 5+25+35 a=52 d=52 S50= 50 (2, 12+49, 12) = 25×51J2 = 1275/2 Sin36, sin6 coo6 = sin367 sin6 col6 51ncl SING+(col6) SINCl Smi6+Col8=) = sing = tang

(iii) Increasing y'>0, concave up y">0.
y2-4x-3>0. 6x-12>0.
$\frac{\chi^2 - 4\chi - 3 > 0}{4}$ $6\chi > 12$
AT I
(2-57) (2+57) X > 2.
2 + 21 5 ()
: x<1-57, x>2+57 0° 01>2+57 for increasing
y and concorde up
(iv)
17-04
4
2-57
(2,-30)
-61-04
(d) F(2,1) V(3,1)
$(i) a=1$ $F(\lambda_1) \vee (3_1)$
,
(ii) $(y-k)^2 = -4(x-h)$
$(y=1)^2 = -4(x-3)$
y=2y+1=-4x+12
4x+42-2y-11=0.
J
Additional writing space on back page.

Student Number

Examination:	3	•
Q13 a) V= TI	$\int (10-3x)^2 dx$	or 11 (100-8071+972d)
	0 _3)
· = = TT (/ 0 - 30c)	= 1) (100x-30xi+3x)
	9]	= T × 300-270+81
	L (-1000)	= IIITW3
9	1 9	
= 99911	<u>u</u> 3	
= 111:	IT W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
b)	***************************************	
		A
-2 -1/	234	
€		
c) i) 56(+6	$\int_{-1}^{1} dx = 2(51+6)^{\frac{1}{2}}$	+ <i>C</i>
. , , , , , , , , , , , , , , , , , , ,	, y ====	7
$1) + \left(\frac{270}{531}\right)$	- ds1 = { ln (244)	= 1/ln 8-ln 4)

Caringbah High School

Student Number

Examination.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DIMINAMENTO III.	*************************

d) 3 a
7.
1 1 1 2 1
(i) 1+ 28m ol = 0
$\sin \alpha = \frac{1}{2}$
212 71 117
6) 6
$(4n-3)^2$
(45t-4a+3) (4x+4g-3)

						.	F
	5	Stude	nt N	ımbe	:r		<u> </u>

Examination:....

d) St Rf 3p (k+2) 31+4=0
$\Delta = (k+2)^2 - 16 \ge 0$
k2+4k-1220
(k+1)(k-1)>0
$k \leq -6$, $k \geq 2$
(2) $(12+3)$ (40) (24) (17)
24 12
1447/201= 960
1201 = 816
7/ = 6 8.
f) 1m (21-3) (21-2) /m 21-72
11+3 フレ-3 71+33
= 5

· · · · · · · · · · · · · · · · · · ·

Student Number

Examination:...

can by 15.

 $\frac{1}{225} = \Gamma^{2} + \frac{h}{2}$ $\frac{1}{225} = \Gamma^{2} + \frac{h^{2}}{4}$ $\frac{1}{225} = \Gamma^{2} + \frac{h^{2}}{4}$ $\frac{1}{225} - \frac{h^{2}}{4} + \frac{h^{2}}{4}$ $\frac{1}{225} - \frac{h^{2}}{4} + \frac{h^{2}}{4}$ $\frac{1}{225} - \frac{h^{2}}{4} - \frac{h^{2}}{4}$ $\frac{1}{4}$

(ii) $V = 225\pi h - \pi h^{3}$ $\frac{dv}{dh} = 225\pi - 3\pi h^{2}/1$ when $\frac{dv}{dh} = 70$ $\frac{dh}{dh} = 225\pi$ $\frac{dh}{dh} = 225\pi$ when $h = 10\sqrt{3}$. $\frac{3\pi h^{2}}{4} = 900$ $h^{2} = 300$

· N= # 10/3.

b) 271 + 371 - 4=0
1) dt dz = = 1/1
(1) $\lambda^3 + \beta^3 z (\lambda + \beta) (\lambda^2 - \lambda \beta + \beta^2)$
= 2+B) (Q+B)=3dB) 1 1 D=-4=-2
$=\frac{3}{5}\left(\frac{9}{9}-3\times(-2)\right)$
$=\frac{-2}{2}(\frac{9}{4}+6)$
$Z \stackrel{2}{\leftarrow} X \stackrel{33}{\leftarrow} .$
Z
E -99 / L
. 8
t) $A_0 = 120000$ $n = 120$ $r = 0.005$
A = 120000 × 1.005
= 120,600 l
M = 120600 - M
Az=120600×1.005-M×1.005-M
= 121203 - 2.005M]

$A_3 = 120000 \times 1.005 - m(171.00071.005)$
17.0.0.00
$A_n = 120000 \times 1.005^n - M([+1.005 + 1005^2 + 1.005^n])$
(1(1-005 ⁿ -1))
1.005-1
= 120000 x1-005 200m (1-005 L)
$N = 120000 \times 1.005^{20}$
$= \frac{120000 \times 1.005^{2} - 200m(1.005^{2})}{11}$ $= \frac{120000 \times 1.005^{20}}{200(1.005^{10}-1)}$
= \$1332·25.
·

_

2

							·4	
1	1	ŀ				ľ		
i	<u>. </u>	ļ				ŀ	1 1	i
-		Stude	nt N	umbe	31			

Exam	ina	tio	n:

14
94) iV= V0e-200
$\frac{-1}{2b} \frac{dV}{db} - h(Voe^{-bb})$
=-kV
774,774,774,774,774,774,774,774,774,774
1) When $f = 0$ $V = 1000$ $V = 1000 e^{-kb}$
when £ 240 V 2800
800 = 1000 e
-40k _ 4 5
$-40h = ln + \frac{4}{5}$ $k = -ln + \frac{4}{5}$
k= -inst
40
V= 1000 p (-(m 5))
= 7/6L = (1/6/±1/6)
$\frac{111}{10} = 1000 = \frac{1000}{1000}$
U`U\≡ €, 40
In 56 = ln 0.01
t= 40 ln 0.01 = 826 min 1251d
= 13hrs 46min.

6)	•
~ /	
8	***************************************
(3)	>> •••••••••••••••••••••••••••••••••••
4	***************************************
4×4×8×5m= 4×8× I	
- 16J3 - 17 J 3211 3	

Area = 32T - 8/3	

$C)$ θ 3λ	
/2/2L)*************************************
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32/2	,
V34 PD 5	1411-11717
to 1 > 10 - 218	
122728=360	***************************************
Zd + Zo = 180	
102=180	
2=18°	. -
36 + 26 = 180	***************************************
2=18° 36+26=180 B=72°	***************************************
	11std

(de
CHIMITIA BILL
(<u>**</u>

		Т	
 Studen	t Numi	ber	

		atio		
Y 27	min	มบเก	n.	

d); dr. log pe - se
uzz velnya
yzl Xyz z
W 1 V . 7l
21x / 1/2 -1 - 1
20x 21 2 Logo 21 - 1
= / + login-/
= 1 + log 12-) = (eg 21.
Loge 30) dot = 2 Sloge it doit
= 2 (s (loge 26-21) 7 C
11) Aeuz (2. logo 5) x 5 -2 kg (2) doc
,
= 10 loge 5 - 2/26 loge 20 - 26)
= 10 tige 5 = \$ - 5 - (.1 tgs/-1)
B) (-18)

10/09e5-(19/cg5-4)

Q 16 d in Afternative method:
G16 di) Alternative method:
J logi613) dy y= logi212
4075 y= 2 (1907)
= (2 dy / 100)17 \$
125 y= 2 logo1 = 5 e dy logo12 t
1-7
= Ze + w25 = 0
- 2 (ln5 - 17)
- : - 11 7
$= 2\left[e^{4\pi 5} - 2\right]$ $= 2\left[4\right]$
5 P.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,